Recommendations for Maintaining Postharvest Quality

Carlos H. Crisosto, Elizabeth J. Mitcham, and Adel A. Kader
Department of Plant Sciences, University of California, Davis

MATURITY INDICES

In most of the cultivars growing in California, harvest date is determined by skin color changes that are described for each cultivar. A color chip guide has been designed to determine maturity for each cultivar.

A three tier maturity system is used in California:
1. US-Mature (Minimum Maturity)
2. Well-Mature
3. Tree Ripe

Measurement of fruit firmness is recommended for cultivars where skin ground color is masked by full red or dark color development before maturation.

Maximum maturity: Flesh firmness, measured with a penetrometer with an 8 mm tip, can be used to determine a maximum maturity index, which is the stage at which fruit can be harvested without suffering bruising damage during postharvest handling.

Plums are less susceptible to bruising than most peach and nectarine cultivars at comparable firmness.

QUALITY INDICES

- High consumer acceptance is attained on fruit with high soluble solids content (SSC).
- Fruit acidity, SSC/acidity ratio, and phenolic content are also important factors in consumer acceptance.
- There is no established minimum quality standard based on these factors.
- Plums with 2-3 pounds-force flesh firmness are considered "ready to eat".

OPTIMUM TEMPERATURE

-1.0 to 0°C (30.5-32°F) Freezing point varies depending on SSC.

OPTIMUM RELATIVE HUMIDITY

90-95% R.H; an air velocity of approximately 50 CFM is suggested.

RATES OF RESPIRATION

<table>
<thead>
<tr>
<th>Temperature</th>
<th>0°C (32°F)</th>
<th>10°C (50°F)</th>
<th>20°C (68°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml CO₂/kg·hr</td>
<td>1-1.5</td>
<td>4.2</td>
<td>8.2</td>
</tr>
</tbody>
</table>

To calculate heat production multiply ml CO₂/kg·hr by 440 to get BTU/ton/day or by 122 to get kcal/metric ton/day.
**Plum Produce Facts**

*Postharvest Technology Center*  
*Source: Perishables Handling #86, May 1996*  
*University of California, Davis*

---

### Rates of Ethylene Production

<table>
<thead>
<tr>
<th>Temperature</th>
<th>0°C (32°F)</th>
<th>5°C (41°F)</th>
<th>10°C (50°F)</th>
<th>20°C (68°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>µl/kg·hr</td>
<td>&lt;0.01-5</td>
<td>0.02-15</td>
<td>0.04-60</td>
<td>0.1-200</td>
</tr>
</tbody>
</table>

The lower end of this range is for mature but unripe fruit; higher values are for ripe fruit.

---

### Responses to Ethylene

Most of the plums harvested at the California Well-Mature stage (higher than US-Mature) will ripen properly without exogenous ethylene application. Ethylene application to fruit harvested at the US-Mature maturity will only ripen the fruit more uniformly without speeding up the rate of ripening. However, for the slow ripening plum cultivars, exogenous application of ethylene (100 ppm for 1-3 days at 20°C / 68°F) is needed for even ripening. These cultivars are Angeleno, Black Beauty, Casselman, Late Santa Rosa, Kelsey, Nubiana, Queen Ann, Red Rosa, and

---

### Responses to Controlled Atmospheeres (CA)

The major benefits of CA during storage/shipment are retention of fruit firmness and ground color. Decay incidence has not been reduced by CA of 1-2% O₂ + 3-5% CO₂. CA conditions of 6% O₂ + 17% CO₂ are suggested for reduction of internal breakdown during shipment, but its effectiveness depends on cultivar, preharvest factors, market life and shipping time.

---

### Effects of Genotype and Cultural Cultivars in California

Market life varies among cultivars and it is strongly practices on affected by temperature management. Maximum market life is obtained when fruit are stored at approximately 0°C (32°F). Maximum market life varies from 1-8 weeks. Because internal breakdown is the main limitation to market life, minimum postharvest life occurs when fruit is stored at 5°C (41°F).

---

### Physical and Physiological Disorders

**Internal Breakdown or Chilling Injury.** This physiological problem is characterized by flesh translucency, flesh internal browning, flesh mealiness, flesh bleeding, failure to ripen and flavor loss. These symptoms develop in plum and fresh prunes during ripening after a cold storage period. Thus, these symptoms are usually detected by consumers. Fruit stored within the "killing temperature range" 2-8°C (36-46°F) are more susceptible to this problem.

---

### Pathological Disorders

**Brown rot.** Caused by *Monilil fructicola* is the most important postharvest disease of stone fruits. Infection begins during flowering and fruit rot may occur before harvest but often occurs postharvest. Orchard sanitation to minimize infection sources. Preharvest fungicide application and prompt cooling after harvest are among the control strategies. Also, postharvest fungicide treatment may be used.

**Gray Mold.** Caused by *Botrytis cinerea* can be serious during wet spring weather. It can occur during storage if the fruit has been contaminated through harvest and handling wounds. Avoiding mechanical injuries and good temperature management are effective control measures.

**Rhizopus Rot.** Caused by *Rhizopus stolonifer* can occur in ripe or near ripe stone fruits kept at 20 to 25°C (68 to 77°F). Cooling the fruits and keeping them below 5°C (41°F) is very effective against this fungus.
POSTHARVEST PHOTO GUIDE

MATURITY AND QUALITY

Plums Ripeness Stages

DISORDERS

Chilling Injury

Alternaria Rot
It is the policy of the University of California not to engage in discrimination against or harassment of any person, employed by or seeking employment with the University, or in any of its programs or activities, on the basis of race, color, national origin, religion, sex, gender, gender expression, gender identity, pregnancy, physical or mental disability, medical condition (cancer-related or genetic characteristics), genetic information (including family medical history), ancestry, marital status, age, sexual orientation, citizenship, or service in the uniformed services, as well as state military and naval service. This policy is intended to be consistent with the provisions of applicable state and federal laws and University policies. University policy also prohibits retaliation against any employee or person seeking employment for bringing a complaint of discrimination or harassment pursuant to this policy. This policy also prohibits retaliation against a person who assists someone with a complaint of discrimination or harassment, or participants in any manner in an investigation or resolution of a complaint of discrimination or harassment. Retaliation includes threats, intimidation, reprisals, and/or adverse

In addition, it is the policy of the University of California to undertake affirmative action, consistent with its obligations as a Federal Contractor, for minorities and women, for persons with disabilities, and for covered veterans. The University commits itself to apply every good faith effort to achieve prompt and full utilization of minorities and women in all segments of its workforce where deficiencies exist. These efforts conform to all current legal and regulatory requirements, and are consistent with University standards of quality and excellence. In conformance with Federal regulations, written affirmative action plans shall be prepared and maintained by each campus of the University of California, by the Lawrence Berkeley National Laboratory, by the Office of the President, and by the Division of Agriculture and Natural Resources. Such plans shall be reviewed and approved by the Office of the President and the Office of the General Counsel before they are officially promulgated. Inquiries regarding the University's equal employment opportunity policies may be directed to the Affirmative Action Contact, University of California, Agriculture and Natural Resources, 2801 Second Street, Davis, CA 95618 (530) 750-1318.