Biology of ethylene production & action in fruits

What is ethylene?
- \(\text{C}_2\text{H}_4 \)
- Very simple molecule
- A gas
- An important chemical feedstock
- A natural plant hormone

Where does ethylene come from?
- Smoke
- Vehicle exhausts
- Ripening rooms
- Ripening fruits

Ethylene - an important factor
- Useful:
 - Accelerates ripening
 - Causes abscission
- A problem:
 - Accelerates ripening
 - Accelerates senescence
 - Causes abscission
Uses of ethylene in horticulture

- Induction of flowering
 - Bulbs, Pineapple & other Bromeliads
- Harvest aid
 - Walnuts, Sour cherries
- Induction of ripening or coloring
 - Bananas, Citrus

History of ethylene biology

- Prehistoric
 - Fruit ripening, smoky rooms, ripening fruit
- Amos, 1000 B.C.
 - Scarification of figs - wound ethylene
- Neljubow, 1907
 - Ethylene gas - plant growth regulator
- Cousins, 1913
 - Ethylene causes ripening
- Gane, 1932
 - Produced by ripening fruits
- Goeschl and Pratt, 1960
 - Role in plant growth and development
 - Plant hormone
- Veen, 1978
 - Silver thiosulfate
- Yang, 1979
 - Ethylene biosynthesis pathway
- Bleeker, 1988
 - Etr-1
- Sisler and Blankenship, 1996
 - 1-MCP

Ethylene responses

- Reduction in growth (seedlings)
- Loss of leaves and flowers (plants)
- Leaf yellowing or death (plants)
- Epinasty (leaves)
- Senescence (flowers)
- Ripening (fruits)
- Abscission (fruits, leaves, branches)
- Dehiscence (seeds)

Seedling growth

Neljubow, a graduate student in Russia, was the first to show that ethylene caused these strange effects on etiolated pea seedlings
Characteristics of ethylene responses

- Threshold concentration (0.1 ppm)
- Plateau concentration (10 ppm)
- Associated respiration rise
- Temperature optimum (15 - 25 C)
- CO2 (>1%) inhibits

Abscission of snapdragon flowers in response to ethylene shows a typical threshold and plateau response

The ethylene response cascade

The ethylene response cascade is an important physiological indicator.

- **Non-climacteric fruits**
 - Respiration falls steadily throughout development
 - Ethylene not involved in ripening
 - Citrus, grapes, olives, cherries, many berries

Respiration - important physiological indicator
Respiration and ethylene production rise during fruit ripening

Ethylene is a ripening ‘trigger’ in climacteric fruits
- Once ripening is initiated, climacteric fruits produce ethylene
- Ripening is then self-controlled

Ethylene production in plants

Tools for working with ethylene:
Measurement
- Expensive, but routine
- Bioassay - cheap, difficult
- Kitagawa tubes - $2 / measurement
- Proprietary analyzers - $500 to $10,000
- Gas chromatograph - $10,000 to $30,000
- Photo-acoustic detector - $50,000
Tools for working with ethylene: Application

- Ripening fruits
- Ethylene gas
- Acetylene, CO
- Ethephon
 - Liquid, spray, drench

Sensorsense Photoacoustic Ethylene Detector

$50,000

Detector
Oven
Electrometer

$9,000
Molecular manipulation of ripening

- Anti-sense ACC synthase
- Anti-sense ACC oxidase
- Result - fruits that ripen very slowly, require ethylene treatment to ripen
- Just like Never Ripe (NR), a tomato mutant, used to develop long shelf-life tomatoes
Anti-sense ACC oxidase in melons

Anti-sense technology will improve marketing of many fruits

Questions?